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Rotating stably stratified geophysical flows can exhibit a near ‘balanced’ evolution
controlled by the conservative advection of a single scalar quantity, the potential
vorticity (PV). This occurs frequently in the Earth’s atmosphere and oceans where
motions tend to be weak compared with the background planetary rotation and
where stratification greatly inhibits vertical motion. Under these circumstances, both
high-frequency acoustic waves and lower-frequency inertia–gravity waves (IGWs)
contribute little to the flow evolution compared with the even-lower-frequency advec-
tion of PV. Moreover, this ‘slow’ PV-controlled balanced evolution appears unable to
excite these higher-frequency waves in any significant way – i.e. balance persists.

The present work pushes the limits of balance by systematically exploring the
evolution of a range of highly nonlinear flows in which motions are comparable with
the background rotation. These flows do not possess a frequency separation between
PV advection and IGWs. Nonetheless, the flows exhibit a remarkable persistence of
balance. Even when flows are not initialized to minimize the amount of IGWs initially
present, and indeed even when flows are deliberately seeded with significant IGW
amplitudes, the flow evolution – over many inertial periods (days) – remains strongly
controlled by PV advection.

1. Introduction
Intermediate-to-large-scale fluid motions within the atmosphere and oceans are

strongly influenced by both the planetary rotation and stable density stratification.
Cyclones and other features tend to rotate slowly compared with the planetary
rotation (the Rossby number is small) and have vertical shears which are weak
compared with the buoyancy frequency (the Froude number is small). Exceptions
occur at smaller scales, in convective regions, and in the upper atmosphere, but these
tend to be localized. Otherwise, rotation and stratification combine to render fluid
motions ‘layerwise two-dimensional’, with vertical motions often substantially weaker
than horizontal motions (cf. Viúdez & Dritschel 2003, hereafter referred to as VD03,
and references therein). Moreover, these motions are, often to astonishing accuracy
(McIntyre & Norton 2000), governed by a single nearly conservative scalar field, the
potential vorticity (PV). The generally higher-frequency inertia–gravity waves (IGWs)
and acoustic waves play only a minor role. This PV-controlled motion is known as
balance (Hoskins, McIntyre & Robertson 1985; Ford, McIntyre & Norton 2000 and
references therein).

Balance is only a hypothetical state of motion – departures from balance, the IGWs
or ‘imbalance’, appear to be inevitable, implying an inherent ambiguity in the concept
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of balance (Ford et al. 2000). Yet these departures can be surprisingly weak, much
weaker than a simple scale analysis would indicate, justifying balance even in nonlinear
flow regimes, where PV and IGWs evolve on similar time scales (cf. Vanneste &
Yavneh 2004; Vanneste 2004; Viúdez & Dritschel 2004). This has often been exploited,
practically in meteorology (in data assimilation and forecast initialization), and
theoretically in modelling fundamental fluid behaviour via reduced balanced models
(cf. Vallis 1996).

The advantage of balanced models is that they filter the higher-frequency IGWs
from the dynamics, reducing it essentially to PV advection. This filtering is normally
accomplished by suppressing a pair of time derivatives in the original equations of
motion. This transforms two ‘prognostic’ hyperbolic equations into a pair of ‘dia-
gnostic’ elliptic equations. These equations, which are often nonlinear, together with
the definition of PV, may then be inverted to find the original flow variables (velocity,
density, etc.). There is considerable freedom in this procedure: the original equations
can be time-differentiated multiple times and rewritten as prognostic equations for
a pair of new (time-differentiated) variables which might appear more wavelike.
Filtering these equations can be more effective in eliminating IGWs or, equivalently,
in defining an accurate balanced evolution (Mohebalhojeh & Dritschel 2000, 2001).

The ambiguity in defining balance is inherent in the nonlinear equations governing
the flow. No one balanced model is suitable for all regimes of flow. No one set of
diagnostic relationships is suitable for defining balance. And without a definition of
balance, it is impossible to quantify departures from balance, i.e. the existence of
IGWs, in the full IGW-permitting equations of motion.

To overcome this obstacle, a new diagnostic procedure for defining balance was
developed recently (Viúdez & Dritschel 2004). This procedure, called ‘optimal PV
balance’, involves integrating the full equations of motion (recast to make PV conserva-
tion explicit) backwards and forwards in an iterative cycle designed to minimize the
generation of IGWs. The balance so obtained depends only on the PV distribution
at the diagnostic time and on the period of integration �τ in the cycle. In practice,
results prove insensitive to �τ for �τ values exceeding about three inertial periods
Tip = 2π/f , where f is the Coriolis parameter (twice the background rotation). We
may thus argue that the ambiguity has thereby been minimized, in a natural sense.

The goal here is to use this new procedure to quantify the importance of IGWs, in a
three-dimensional non-hydrostatic isochoric flow, across a wide range of geophysically
relevant flow parameters (Rossby number, Froude number, and scale ratio). To this
end, we identify the characteristics of the PV distribution which trigger the emission of
IGWs. Furthermore, we examine the accumulative impact of IGWs on the balanced
flow, by varying the initial degree of imbalance for a fixed initial distribution of PV.

The paper is organized as follows. In the next section, we recall the governing
fluid-dynamical equations, recast in a novel way to make PV conservation explicit.
This is convenient both for the optimal PV (OPV) balance procedure and for the
novel numerical method employed, as indicated in § 3. A simple illustration of OPV
balance is provided in § 4 to clarify how it may be used to minimize IGW generation,
thereby providing an accurate estimate of the underlying balance. In § 5, we turn to
a class of complex flows involving the breakup of an unstable jet into cyclonic and
anticyclonic eddies. These flows are investigated over a wide range of parameters
(spanned by nearly 100 simulations), in order to better understand the role of IGWs
and the persistence, or not, of balance. Flows are initialized either with minimal IGWs
or with moderate-amplitude IGWs, and comparisons are made to assess the impact
of IGWs on the underlying balance. The principal findings are reviewed in § 6.
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2. Mathematical preliminaries
This study makes use of the simplest three-dimensional model of a rotating stratified

fluid. We consider the isochoric (non-divergent) flow of an incompressible inviscid
fluid. Thus, the density ρ is materially conserved. Moreover, density variations are
considered small compared with a background linear reference profile ρ̄(z), to allow
the Boussinesq approximation to be made. This reference profile defines the mean
buoyancy frequency N . The fluid motion is viewed relative to a rotating reference
frame, which rotates at the rate Ω = f/2, where f is the Coriolis frequency. Both f

and N are taken to be spatially uniform. This model is appropriate to the oceanic
mesoscale away from boundaries and the free surface.

Under these assumptions, it is customary to write the governing equations in terms
of the velocity u = (u, v, w) and the buoyancy b = −g(ρ− ρ̄)/ρ0, where ρ0 is a constant
reference density (note that N2 = −gρ̄z/ρ0). However, in this form ∇ · u =0 is not
explicitly enforced; an additional equation is needed to solve for the pressure. But
perhaps more fundamentally, the conservation of potential vorticity Π for fluid
particles is not explicit. The potential vorticity (PV), a scalar field, is proportional to
the product of the absolute vorticity ω + f k (here the horizontal planetary vorticity
is neglected) and the gradient of the density (or more generally, the thermodynamic
entropy; see Hoskins et al. 1985). It may be defined in a dimensionless way by

Π = (k + ω/f ) · (k + ∇b/N2) (2.1)

(cf. Dritschel & Viúdez 2003, hereafter DV03), and in an adiabatic inviscid flow it is
conserved following fluid particles:

Π̇ ≡ Πt + u · ∇Π = 0 (2.2)

(the subscripts t , x, y and z denote partial differentiation). Despite its importance
in rotating stably stratified flows (cf. Ford et al. 2000), PV has not been used in the
numerical simulation of these equations until recently (DV03, VD03). This, it would
appear, is due to the nonlinear dependence of PV on the original flow variables u and
b. Using PV requires one to pick two other independent variables and allow them
to evolve and then to invert the definitions of PV and these two other variables to
obtain u and b. Typically, this involves the inversion of nonlinear elliptic equations.

In DV03, the choice of these two other variables was motivated by anticipating that
typical flows remain close to hydrostatic and geostrophic balance. Hydrostatic balance
results from neglecting the vertical acceleration in the momentum equations, while
geostrophic balance results from ignoring the horizontal acceleration (in the rotating
frame of reference). When combined to eliminate the pressure, these two balances
relate the vertical shear of the horizontal wind to the gradient of the buoyancy; they
are known as the ‘thermal wind’ relations. It was argued that if the PV controls the
balanced motions, the other variables should express the unbalanced motions, at least
to leading order. To this end, the other variables were chosen to be the horizontal
components of the dimensionless vector

A ≡ ω/f + ∇b/f 2. (2.3)

The subscript h denoting ‘horizontal part’, the statement Ah = 0 expresses hydrostatic–
geostrophic balance to a high degree of accuracy (uz and vz dominate wx and wy in ωh).
This choice has many convenient mathematical properties too. As a vector expression,
it is coordinate independent. Moreover, if we define a vector potential by A = ∇2ϕ,
the original variables may be recovered from u = −f ∇ × ϕ and b = −f 2∇ · ϕ. Note
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that ∇ · u =0 is explicit. (A related transformation was introduced by Muraki,
Snyder & Rotunno (1999) for hydrostatic flows.)

The evolution equations for Ah are given in DV03 and are not repeated here.
These equations involve u and b, which are found by inverting the definitions of Ah

and Π each time. The horizontal part of the vector potential ϕh can be found simply
by operating the inverse of Laplace’s operator on Ah. The vertical part φ, however,
requires solving a double Monge–Ampère equation, a quadratically nonlinear equation
which is normally elliptic but may in extreme cases be hyperbolic over parts of the
flow (details are given in DV03). This is the price to pay for using PV as a prognostic
variable, but in practice it is not costly. The explicit conservation of PV has major
advantages, both for numerical accuracy and for defining the PV-controlled balanced
flow, as seen below.

3. Outline of the numerical algorithm and optimal PV balance
3.1. Numerical algorithm

Full details of the numerical algorithm are given in the appendix of DV03, so only a
brief review of the essential elements is provided here.

The algorithm integrates the equations for Ah and Π in an idealized triply periodic
box of dimensions LX × LY × LZ . Without loss of generality, we take LZ =2π and
take LX = LY = 2πN/f (typically the frequency ratio N/f is about 10 to 100 in the
ocean). Equal numbers of grid points are used in each direction, here 64 except
where noted. This anisotropic geometry, a flat slab, is necessary to model accurately
PV-controlled flows, which often exhibit horizontal to vertical scale ratios of O(N/f )
(see VD03; Reinaud et al. (2003), and refs.).

The algorithm exploits the periodicity by making use of a spectral representation of
all fields to compute spatial derivatives and to invert operators etc. Products of fields
are carried out on the grid after performing fast Fourier transforms. This approach
is standard. Less standard is the contour representation used to ensure material
conservation of PV to high accuracy. Here, the contour-advective semi-lagrangian
(CASL) algorithm is employed (Dritschel & Ambaum 1997). The potential vorticity
is represented by contours lying on material isopycnal (constant-density) surfaces.
In the present study, 64 surfaces were used (the number of isopycnals is however
independent of the number of vertical grid points). The contours represent jumps in
Π , so that the PV is piecewise uniform. Each contour is represented by an ordered set
of ‘nodes’ whose number may vary as the contour deforms and stretches. These nodes
simply move with the local fluid velocity to ensure PV conservation. But one cannot
follow contour stretching indefinitely, so exact conservation must be relaxed at some
level. This is done in CASL by ‘surgery’, which limits the width of PV filaments to one-
twentieth of the horizontal grid size. Additionally, a weak biharmonic hyperdiffusion
is added to the Ah tendencies, to control the build-up of grid-scale noise. Except
where noted, the damping (e-folding) rate on the highest wavenumber (here 32) is
1 per inertial period, as in previous studies. Overall, the total numerical dissipation
is substantially weaker than that required in traditional grid-based approaches for
numerical stability, as the comparison in DV03 illustrates. An accurate representation
of the PV field, we argue, is a prerequisite in any proper assessment of IGW emission.

The inversion of the nonlinear Monge–Ampère equation for the vertical component
φ of the vector potential ϕ requires gridded PV values. These are obtained by a fast
interpolation algorithm described in DV03. The Monge–Ampère equation is solved it-
eratively, by inverting the linear operator part of the equation on the remaining terms,
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found from the previous iterate for φ. This procedure converges exponentially fast,
and normally only a few iterations are required.

Time integration is carried out using a third-order Adams–Bashforth method for
the contours and a leap-frog method for Ah. The time step is set to a tenth of the
buoyancy period 2π/N for high accuracy.

3.2. Optimal PV balance

The main purpose of this paper is to quantify the degree to which the PV controls
the evolution of rotating stably stratified flows. Do the inertia–gravity waves matter?

The full dynamics contains a mix of PV-controlled balanced motions and inertia–
gravity waves (IGWs), or unbalanced motions. Separating the two has not proved to
be easy, and indeed it may be impossible to do so precisely. For example, one might
decide to invoke hydrostatic–geostrophic (or ‘quasi-geostrophic’) balance to define the
PV-controlled flow, but then one would find that a part of the residual unbalanced
motions is closely tied to the PV evolution and hence is actually part of the balanced
motions. The difficulty is making this observation precise. The best we can do is to
minimise the imbalance in any definition of balance.

This is the idea behind a new procedure for defining balance, called the ‘optimal
PV (OPV) balance’ (Viúdez & Dritschel 2004, hereafter VD04). This procedure does
not define balance by imposing specific balance relations (e.g. thermal-wind relations),
but rather by integrating the full equations of motion backwards and forwards over
a non-physical time τ in a way which reduces the imbalance after each integration
cycle. During each integration, the PV anomaly � ≡ Π − 1 on each fluid particle
is multiplied by a ramp function T (τ ) which varies smoothly from 0 to 1 from the
beginning (τ = 0) to the end (τ =�τ ) of the ramp period. The fluid particles are
allowed to move freely, reaching a new configuration at the end of each backwards
integration (from τ = �τ to 0). Any residual motion must be due to IGWs and is
removed. The integration then restarts, now forwards, and the fluid particles again
move freely, ending up close to the actual configuration (in the diagnosed flow) at the
end of the integration. Any difference is then removed by resetting the PV distribution
to the actual one, and the next integration cycle begins. This is repeated until the
difference in the fields obtained at the end of successive cycles is less than some
tolerance. The resulting fields define the balance – they have minimal IGWs.

This procedure has one adjustable parameter, namely the period of the integration
�τ . In practice, even for rapidly evolving flows (VD04) the balance is not sensitive to
the choice of this parameter, for �τ values greater than about three inertial periods
(Tip = 2π/f ). Additional results are provided in the following section, for a simple
example.

4. A simple test problem
In this section, we consider the generation of IGWs during the growth and decay

of a spheroidal vortex. This idealized flow is created by ramping up the PV anomaly
� on each fluid particle X , in a flow initially at rest, over various periods TI

ranging from TI = 0.05Tip (abrupt initialization) to TI =5.05Tip. Specifically, we set
� (X, t) =W (t/TI )�0(X), where �0(X) is the specified material PV anomaly at t = TI ,
see below, and W (s) = 1

2
(1 − cos πs) is the ramp function, identical to that used in

previous works (DV03; VD03) and in OPV balance (VD04). The vortical flow thus
created is then spun down again by reversing the ramp (i.e. using the ramp function
until t = 2TI ). After t =2TI , the flow is left to evolve freely without any PV anomaly
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Figure 1. Time evolution of (a) mean-square kinetic energy 〈(u2 + v2)/2〉, (b) mean-square
isopycnal displacement 〈D2〉, and (c) mean-square vertical velocity 〈w2〉, for the ramped-
spherical-vortex simulations. All values have been log scaled. Curves are shown for selected
ramp periods such that TI /Tip = 0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 1.05, 1.55, 2.05, 2.55, 3.05, 3.55,
4.05, 4.55 and 5.05. There is no PV anomaly after t = 2TI , indicated by the thin vertical lines
for each case. (d ) The time averages of 〈(u2 + v2)/2〉 (top), 〈D2〉 (middle) and 〈w2〉 (bottom),
over the final inertial period when only IGWs are present, vs. the ramp period TI .

for a further inertial period. Any residual motions left at this stage must be IGWs.
These waves must have been generated by the growth and decay of the vortex, that
is, only by the initialization procedure, not by the spontaneous generation of IGWs
by the balanced flow (there is no PV advection by the axisymmetric balanced flow).

A priori, we expect significant IGW generation for short ramp periods TI . But what
about long ramp periods? For the results presented next, we take

�0(X) = �m(1 − X2/a2 − Y 2/a2 − Z2/c2),

with �m = −0.75 (an anticyclonic anomaly), a = N/f = 100, and mainly consider
c =1. This corresponds to a spherical PV anomaly in vertically stretched material
coordinates, X′ = X, Y ′ = Y , and Z′ = NZ/f . As the flow develops, isopycnals are
displaced and PV contours expand or contract in physical space so the vortex distorts
in shape yet remains roughly spherical. This distortion excites IGWs.

We examine this next by computing the mean-square kinetic energy 〈(u2+v2)/2〉, the
mean-square isopycnal displacement 〈D2〉, where D = −b/N2 and b is the buoyancy,
and the mean-square vertical velocity 〈w2〉. Here 〈 〉 means a spatial average over
the complete three-dimensional domain. The evolution of these quantities is shown
in figures 1(a)–1(c) for a selected set of ramp periods. Both 〈(u2 + v2)/2〉 and 〈D2〉
exhibit a maximum very close to t = TI when the vortical flow is fully developed, and
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Figure 2. Frequency spectra of (a) w2 (for the spherical vortex, with the profiles for all ramp
periods TI superposed), (b) as in (a) but for the kinetic energy (u2 + v2)/2, and (c) w2 for
TI =5.05Tip but for four different vortex aspect ratios, Nc/f a =0.25 (dashed), 0.5 (dotted),
1 (dash-dot), and 2 (solid). All vortices have the same total volume. In general, spectral
amplitudes drop with increasing TI . In the horizontal-axis label, ‘bp’ stands for ‘buoyancy
period’.

the value of this maximum varies little with TI . After t = 2TI , when there is no PV
anomaly, these two quantities decrease by more than two orders of magnitude. That
is, the residual flow consisting purely of IGWs is much smaller than the balanced
PV-controlled flow which exists when the vortex is fully spun up. Moreover, the
IGWs diminish rapidly in amplitude as TI increases, up to about TI = 3Tip, after
which there is only a slow decrease. By then the residual flow is seven orders of
magnitude smaller than the dominantly balanced flow at t = TI . Interestingly, the
largest excitation of IGWs does not occur for the shortest ramp period but rather for
TI ≈ 0.35Tip, presumably because the time variation of the ramp is too fast to excite
IGW frequencies lying between f and π/TI .

The picture for 〈w2〉 is somewhat different. First of all, there are generally two main
peaks, separated by a minimum at t = TI , except for short ramp periods. These two
peaks occur when the vertical displacement of isopycnals is changing most rapidly
in response to the growth or decay of the vortex. The minimum occurs when the
vortex momentarily stops growing at t = TI . This evolution is again dominated by the
balanced motion, as it appears to respond directly to the PV evolution on the ramp
time scale. However, the IGWs are now much more apparent. They are at most two
orders of magnitude smaller than the peaks in 〈w2〉 (some of this could be due to
saturation of numerical error), but can be larger – by about a factor 3 – for short ramp
periods. Also, 〈w2〉 is six to nine orders of magnitude smaller than 〈(u2 + v2)/2〉 in all
cases. As for 〈(u2 + v2)/2〉 and 〈D2〉, the residual flow in 〈w2〉 after t = 2TI diminishes
rapidly up to about TI = 3Tip but then varies little for longer ramp periods.

This is summarized, for all three quantities, in figure 1(d ), which plots their time-
mean values over the final inertial period when only IGWs are present, as a function
of the ramp period TI . This verifies that there is a transition around TI = 3Tip, beyond
which the ramp period has little influence. Convergence occurs also in the IGW
frequency spectra obtained during the last inertial period; see figures 2(a) and 2(b)
for w2 and (u2 + v2)/2. For very short TI , the greatest excitation occurs around a



372 D. G. Dritschel and Á. Viúdez

frequency π/TI (=10f or 0.1 cycles per buoyancy period when TI =0.05Tip). These
IGWs are therefore a direct response to the ramped initialization. As TI increases,
they become much less important and, for TI

>∼ 3Tip, are overtaken by other very
weak IGWs which do not depend on TI . As shown in figure 2(c), these residual IGWs
depend on the vortex aspect ratio, peaking around Nc/f a = 0.5. However, they are
of very small amplitude in all cases (it is likely that they arise from the distortion
of the initially circular vortex in the periodic domain). The converged spectrum for
w2, for the spherical vortex, exhibits two peaks, at f and around 15f , before steeply
falling at higher frequencies (note that the buoyancy frequency is hardly excited). The
converged spectrum for (u2 + v2)/2 exhibits a single broad peak at f .

This example, while highly idealized, is consistent with previous work indicating
that IGW generation can be greatly suppressed by this ramped PV initialization
procedure for moderately short ramp periods (VD03; DV03; VD04). This example
also gives a lower bound on IGW generation, as more realistic flows are much more
time dependent. Finally, it shows that the ramp period can be used to tune the initial
amplitude of IGWs in a flow. This will be exploited in the results presented next.

5. Unstable jet simulations
5.1. Flow specification and decomposition

We next examine the flow conditions which favour the generation of IGWs and we
quantify the importance of balance in the evolution of complex flows. The results were
obtained from a set of 72 numerical simulations covering a wide range of parameter
space spanned by the maximum PV anomaly |� |max, the initial jet height–width aspect
ratio H/L, and the initialization period TI . The initial jet consists of two perturbed
elliptic cylinders of height H , width L, and of opposite PV anomaly placed side by side
with unperturbed axes parallel to the y axis. The cylinders are perturbed by displacing
the PV contours by ε(sin 2ŷ + sin 3ŷ) in x, where ŷ = yf/N and ε =0.1N/f . The jet
shape is taken to be nearly isotropic in scaled coordinates x, y, Nz/f by choosing
the scaled height–width aspect ratio NH/f L to be either

√
2/2,

√
2, or 2

√
2. When

NH/f L =
√

2 the unperturbed double-cylinder system just fits into a circular cylinder
of radius L in scaled coordinates. In all cases, we take L = 0.5N/f (the domain width
is 2πN/f ) and a frequency ratio f/N = 0.1, comparable with typical oceanic values.
The maximum PV anomaly |� |max is chosen to be either 0.25, 0.5, or 0.75, values
which approximately correspond to the peak Rossby numbers observed during the
evolution of these flows. The flow is spun up from rest by ramping up the PV anomaly
� on fluid particles between t =0 and t/Tip = TI/Tip = 0.01, 0.1, 0.25, 0.5, 1, 2, 4 and
5. Thereafter, the PV is fixed on fluid particles and the equations are integrated until
t = 30Tip. The PV anomaly (� ) and the y component of the velocity (v) at the end
of the longest initialization period are shown in the lower half of the domain and for
y = 0 in figure 3, for the three jet aspect ratios mentioned above and for |� |max = 0.75.
The pattern of v is consistent with dominantly balanced motion, as demonstrated
below.

These parameter variations allow for a wide exploration of flow nonlinearity
or ageostrophy, measured by the Rossby and Froude numbers, Ro = |ζ |max/f and
Fr = |ωh|max/N , as well as the initial level of IGWs, which are controlled by TI , as
seen in the previous section. The objective is to determine the impact of IGWs in
these flows – when do they matter or, in fact, do they matter at all?

To this end, we diagnose the balanced part of each flow ϕ every inertial period
using the OPV balance procedure outlined above, with ramp period �τ = 5Tip. The
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Figure 3. PV anomaly � (bold contours) and y velocity component v (thin contours) at the
end of the initialization period t = TI = 5Tip in the lower half of the domain in the plane y = 0,

for three cases having different jet aspect ratios: (a) NH/f L =
√

2/2, (b) NH/f L =
√

2, and

(c) NH/f L = 2
√

2. The three cases have the same maximum PV anomaly, |� |max = 0.75. The
contour intervals are �� = 0.1 and �v =0.1. The dashed contours correspond to negative
field values. The zero contour is omitted. Note that the fields are symmetric about z = 0, and
z has been stretched by N/f = 10.

difference ϕi from the actual flow ϕ is defined to be the unbalanced flow: ϕi = ϕ − ϕb.
(Recall that the original variables u and b are recovered from spatial derivatives of ϕ.)
ϕi is associated with IGWs, though ϕb is not entirely free of IGWs, as seen in the
previous section, but is nearly so.

5.2. Vortex dynamics

We begin by illustrating the flow evolution in three selected cases differing only in the
aspect ratio of the initial jet. The three cases share the same maximum PV anomaly
|� |max = 0.75 and were initialized with the same ramp period TI =5Tip. Figure 4
compares the PV field (PV contours) lying on the middle isopycnal surface (z ≈ 0) at
times t = 10, 20, and 30Tip. In all cases, the initial jet breaks down into a street of
cyclonic and anticyclonic vortices, which propagate throughout the domain. Note that
the evolution advances at a faster pace for the larger-aspect-ratio cases. This is simply
because tall vortices rotate faster – they have a larger Rossby number; see figure 5.
The anticyclonic vortices are marginally more coherent and circular than the cyclonic
ones, and they rotate faster as well (cf. figure 5), verifying that ageostrophic effects
are significant. Finally, PV gradients sharpen dramatically, as seen by the rapid
decrease in contour spacing in response to the stretching and twisting of material
lines. This is a characteristic feature of inviscid fluid flows.

5.3. Balance and imbalance

We examine next the nature of the IGWs generated over the course of the flow
evolution. Consider first two cases having very different levels of IGWs, one initialized
with TI = 0, i.e. with Ah = 0 initially, and the other with TI = 5Tip, but otherwise
identical (|� |max = 0.75 and NH/f L =

√
2). The full, balanced, and unbalanced

vertical velocity fields (w, wb, and wi) at an early time are shown for contrast
in figure 6. In the case with TI = 0, the vertical velocity is dominated by IGWs (58 %
of the total, see below), while in the other case, the vertical velocity is essentially
balanced (the imbalance is only 3 %). One might therefore expect a significant impact
of IGWs in the first case. However, the flow is hardly being driven by vertical motions,
which – in all the simulations – are never much in excess of 1 % of the horizontal
motions. Moreover, the latter are dominantly balanced, as shown in figure 7 for |uh|
using the same format as figure 6.

In time, IGWs are generated and build up even in the carefully initialized flow with
TI =5Tip. This is shown in figure 8, for the percentage imbalance in vertical velocity,
in the nine cases, encompassed by |� |max = 0.25, 0.5, and 0.75 (the dashed, dotted,
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Figure 4. Snapshots of the PV field (at 10Tip, 20Tip and 30Tip) in the middle isopycnal surface

(z ≈ 0) for the three cases illustrated in figure 3: (a) NH/f L =
√

2/2, (b) NH/f L =
√

2, and

(c) NH/f L =2
√

2. The contour interval is �� =0.075.

and solid curves) and NH/f L =
√

2/2,
√

2, and, 2
√

2 (the thin, medium, and thick
lines). For |� |max = 0.75, a sharp rise in the percentage imbalance occurs between
7Tip and 8Tip – this is identified as spontaneous IGW emission (and described in detail
in Viúdez & Dritschel 2006). For lower values of |� |max the rise occurs later and is
less pronounced, resulting in less imbalance at late times. Remarkably, there is little
dependence on the flow aspect ratio, NH/f L.

5.4. Impact of inertia–gravity waves

While the IGWs in the above case for TI = 0 are small, one may wonder if, over a
long period, their effects might become significant. To check this, we next compare the
above case with another starting from the OPV balanced flow at t =0, integrated to
t = 30Tip. In every respect the simulations are identical, apart from the initial IGWs,
which are absent in the initially balanced flow. Subsequently, imbalance grows in the
initially balanced simulation but remains well below the level found in the original
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–0.5
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0.5

Figure 5. Time-mean maximum (dashed) and minimum (dotted) Rossby numbers and
maximum (solid) Froude numbers vs. |� |max. Bold, medium, and thin lines are used for

NH/f L = 2
√

2,
√

2 and
√

2/2 respectively. The time-mean is computed between t =5Tip and
t =30Tip. These values are independent of TI to within the plotted line width. Note that the
Froude number is nearly independent of NH/f L.

(a) (a)

(b) (b)

(c) (c)

Figure 6. Vertical cross-sections of (a) w, (b) wb, and (c) wi at y = 0 (and for z � 0 only)
in two jet simulations: with TI = 0 (left) at t = 2Tip, and TI = 5Tip (right) at t = 5Tip. Both

simulations have |� |max = 0.75 and NH/f L =
√

2. The contour interval is 2 × 10−4, except for
wi (right), for which it is 100 times smaller. The fields are antisymmetric across z =0.



376 D. G. Dritschel and Á. Viúdez

(a) (a)

(b) (b)

(c) (c)

Figure 7. As in figure 6, except that here cross-sections of (a) |uh|, (b) |uhb|, and (c) |uhi| are
shown. The contour interval is 0.1 for |uh| and |uhb|, while it is 0.001 for |uhi|.
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t/Tip

0
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30

40

50

Figure 8. The percentage imbalance in w, as measured by the ratio of mean absolute values
〈|wi|〉/〈|w|〉 vs. time, for nine simulations all initialized using TI = 5Tip but differing in the
maximum PV anomaly |� |max and the cylinder aspect ratio NH/f L. The dashed, dotted, and
solid curves correspond to |� |max = 0.25, 0.5, and 0.75, while the thin, medium, and thick lines

correspond to NH/f L =
√

2/2,
√

2, and 2
√

2.

simulation; see figure 9. This imbalance results from spontaneous emission of IGWs
from the balanced flow occurring around t = 7Tip (cf. figure 8) and amounts to about
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Figure 9. The percentage of imbalance (a) in uh, and (b) in w, vs. time, for two simulations:
an initially unbalanced one with TI =0 (dashed lines), and an initially balanced one (solid
lines), as described in the text. Note that t starts from 1Tip since w = 0 at t =0 in the unbalanced
simulation.

a b c

a b c

Figure 10. Horizontal cross-sections of (a) � , (b) D, and (c) w at t = 30Tip in the initially
unbalanced (top row) and balanced (bottom row) simulations illustrated in figure 9. The PV is
shown in the middle isopycnal surface (z ≈ 0), while D and w are shown at z = −0.3927, the level
of maximum w. The contour intervals are �� = 0.075, �D = 5 × 10−3, and �w = 2.5 × 10−4.
After t = 7Tip, strong IGW activity is observed in w in both simulations.

32 % of the mean magnitude of the vertical velocity and 0.8 % of the horizontal
velocity at late times. So what about the long-term impact? The fields of PV � ,
displacement D, and vertical velocity w may be compared at the final time t = 30Tip

in figure 10. Hardly any differences at all can be seen in the fields � and D. Even the
w fields are closely similar, despite the 11 % difference in unbalanced vertical velocity
at late times (cf. figure 9). This level of difference is less than the numerical error, as



378 D. G. Dritschel and Á. Viúdez

Figure 11. Three-dimensional perspective images of the vertical velocity field w at t/Tip = 6,
7, and 8 (top row, left to right), wi at the same times (middle row), and PV contours at z = 0
(bottom row). The initial jet axis runs from left to right through the centre of the domain (the
PV contours have been rotated by 90◦ for clarity). The isosurfaces shown are w = ± 10−3 and
wi = ±10−4, with negative values darkly shaded and positive values lightly shaded. These images

were obtained from a special double-resolution simulation with |� |max = 0.9, NH/f L =
√

2/2,
and TI = 5Tip.

deduced by doubling the resolution (convergence results may be found in Viúdez &
Dritschel 2006). While IGWs are better resolved at higher resolution, their effects on
the balanced flow appear to be no more significant.

5.5. Three-dimensional structure of IGW emission

Up to a maximum PV anomaly of |� |max = 0.75, the IGWs are so weak that they are
difficult to visualize, particularly at 643 resolution. A special simulation was therefore
conducted at double resolution (in all directions) and for a larger PV anomaly,
|� |max = 0.9, for a shallow jet with NH/f L =

√
2/2. In this case, the time-mean

Froude number is 0.7, and the maximum Froude number exceeds 0.8 (cf. figure 5),
values which a priori might be associated with much greater IGW activity. This case
closely parallels those for |� |max = 0.75 described above (cf. figures 6–8). Here, a steep
rise in the percentage imbalance in w occurs a little earlier, between 6Tip and 7Tip

(not shown), but does not result in substantially more imbalance, in percentage terms,
during the course of the simulation. While 〈|wi|〉 is roughly ten times larger here than
in the corresponding case with |� |max = 0.75, 〈|w|〉 is roughly twenty times larger.
That is, the ageostrophic balanced vertical velocity also grows steeply with |� |max (or
with Froude number), keeping the imbalance-to-total ratio in check. (Resolution and
numerical damping differences also probably contribute to the observed differences;
this is currently under investigation.) The vertical velocity field between 6Tip and 8Tip is
shown in figure 11, in a three-dimensional perspective view, for both w (top row) and
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Figure 12. Two-dimensional (kh, kz) spatial spectra for (a) w, (b) wb, and (c) wi for a

simulation with no initialization, TI = 0, |� |max = 0.75, and NH/f L =
√

2. The spectra are
time-averaged from t = 11Tip to 30Tip.

wi (middle row). Note that the magnitude of wi shown is only a tenth of the magnitude
of w. The PV contours at z = 0 are shown in the bottom row at the same times. These
images reveal that the source of IGWs is located near the jet axis, most prominently
in the three-way interaction occurring for y > 0 between two merging anticyclonic
vortices and one cyclonic vortex, which subsequently form a mismatched vortex pair.
In time, the waves fan out and propagate upwards and downwards, although some
waves appear trapped in the vicinity of the larger, more circular, anticyclonic vortex
for y < 0. Nevertheless, these represent weak motions, even weaker in the horizontal
velocity for which the time-mean percentage imbalance is just 1.3 %. The upshot
is that the IGWs have little impact on the evolution of these flows, even for O(1)
Rossby and Froude numbers. Much larger IGWs are needed. Large IGWs cannot be
generated by ramping up the PV anomaly in this formulation of the equations. This
is an important result and is discussed further in the conclusions.

5.6. Spectra

Spatial and temporal spectra are next examined for the two cases, discussed in § 5.3,
for which TI = 0 and TI = 5Tip. For the case with no initialization, the time-averaged
spatial spectra of w, wb, and wi, obtained by averaging over the horizontal wavenum-
ber shells kh for each vertical wavenumber kz, show a clear separation of balanced
and unbalanced motions; see figures 12(a)–(c). (Similar but less distinctive results
are found for TI =5Tip.) Balanced vertical motions dominate at low wavenumbers,
in both kh and kz, while imbalanced motions dominate elsewhere. More significantly,
the spectra are nearly isotropic in the scaled wavenumbers (N/f )kh and kz. This is
characteristic of balanced dynamics at small Rossby and Froude numbers, yet here
even IGWs exhibit approximate isotropy. That is, they exhibit vertical-to-horizontal
scale ratios comparable with those exhibited by the balanced vortical structures. The
structure of the PV field appears to dictate the structure of the IGW field.

The temporal frequency spectra for the two cases TI =0 and TI = 5Tip are compared
next. These spectra are obtained by spatially averaging the single-point spectra at a
subset of 8 × 8 × 16 grid points distributed uniformly throughout the domain. Spectra
are computed for the vertical velocity and, additionally, for the horizontal ageostrophic
vorticity Ah, which contains horizontal motions due to IGWs. In particular, Ah can
measure near-inertial oscillations (having no vertical motion), whose frequencies lie
in the vicinity of f . Figures 13(a) and 13(b), for TI =0 and TI =5Tip respectively,
contrast the clockwise and anticlockwise spectra corresponding to Ah. The difference,
more apparent in (a), is associated with near-inertial oscillations (NIOs): for such
motions, horizontal wavevectors rotate exclusively clockwise in time. The spread in
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Figure 13. Frequency spectra for (a) Ah in the case TI = 0, with the clockwise spectrum
rendered bold and the anticlockwise spectrum rendered thin. (b) Ah in the case TI = 5Tip, and
(c) w for both TI = 0 (bold line) and TI = 5Tip (thiner line).

frequencies about f is caused by the PV anomalies, which reduce or increase the
effective background rotation. The remaining IGWs, which depend on stratification,
rotate in either direction and show up clearly in the anticlockwise spectrum. That
the NIOs in (b) are weaker shows that they can be partially suppressed by careful
initialization.

Careful initialization also reduces the amplitudes of the remaining IGWs, as seen
in figure 13(c) for the vertical velocity spectrum. IGWs can be seen to extend from
around f to N , with much weaker amplitudes near N than near f . Note that there is
no peak around f because NIOs have no vertical velocity (albeit only in the absence
of PV anomalies).

5.7. Summary of parameter sweep

The results of all 72 simulations are summarized next, in figures 14–16, in which
the time-mean percentage of imbalance in uh and w is plotted as a function of the
initialization period TI for the three jet aspect ratios. In all cases, the curves level off
for TI

>∼ 2Tip, indicating that a nearly balanced flow state is achieved for moderately
short initialization periods. Longer initialization does not reduce the imbalance
further because of IGW emission throughout the flow evolution. This emission is
clearly strongest for the largest PV anomalies, corresponding to the largest Rossby
numbers, as expected. However, it depends only weakly on the Froude number. Note
that the percentage of imbalance approximately doubles as one goes from small to
moderate Rossby numbers. In the limit of small Rossby numbers, quasi-geostrophic
scaling (using geostrophic and hydrostatic balance) implies that uh = O(Ro) and
w = O(Ro2f/N) (cf. McKiver & Dritschel 2006). These apply to the balanced flow.
Assuming that this scaling is valid here, the results shown in figures 14–16 for TI

>∼ 2Tip

indicate that the unbalanced flow components are one order of Ro smaller, for
Ro � 1.
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Figure 14. The time-mean percentage of imbalance (a) in uh, and (b) in w, vs. the initialization

period TI , for a jet aspect ratio of NH/f L =
√

2/2. The dashed, dotted, and solid lines
correspond to |� |max = 0.75, 0.5, and 0.25, respectively. The time mean is computed between
10Tip and 30Tip.
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Figure 15. As in figure 14, but for a jet aspect ratio of NH/f L =
√

2.
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Figure 16. As in figure 14, but for a jet aspect ratio of NH/f L =2
√

2.

6. Concluding remarks
Potential vorticity (PV) has long been recognised as the key quantity driving

large-scale fluid motions in the atmosphere and oceans (Hoskins et al. 1985; Ford
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et al. 2000). Fundamentally, this notion rests upon the constraints imposed by rotation
and stratification, which act together to inhibit the overturning of material surfaces
and the intensification of vorticity. Certain balances are established, approximately,
between the PV and other dynamical fields which would otherwise be free to evolve
with far greater independence. Hydrostatic and geostrophic balance are examples but
are only the simplest. The question is: how much of the flow does the PV actually
control?

The present work has demonstrated that a wide class of flows within realistic
geophysical parameters exhibit a very high degree of balance, to the extent that the
residual motions, the inertia–gravity waves, play almost no role. This is consistent with
the recent small-Rossby-number asymptotic analysis of Zeitlin, Reznik & Ben Jelloul
(2003), who demonstrated a decoupling of balanced and imbalanced motions for times
t � Tip/Ro. Our results suggest that this decoupling remains a good approximation up
to Ro = O(1), at least for flows which are nearly balanced initially. Similar conclusions
were reached in a recent work on fully turbulent flows (McKiver & Dritschel 2006).
We conjecture that the persistence of balance is limited only by inertial and static
stability.

Interestingly, this class of flows was created using a novel approach which features
PV explicitly (DV03). This forces one to reformulate the governing equations in
terms of a new set of variables, from which the original set (velocity, buoyancy,
and pressure) are recovered diagnostically, via the inversion of elliptic operators.
Here initial conditions are created for the other dynamical fields (specifically, the
ageostrophic horizontal vorticity), by artificially ramping up the PV anomaly on fluid
particles to its desired level while integrating the full equations of motion. Previous
studies found that long ramp periods, of several inertial periods or more, establish a
nearly balanced initial state (cf. VD04). It was anticipated that short ramp periods
would excite significant inertia–gravity waves simply because the flow has to adjust
rapidly to the growing PV anomaly. Inertia–gravity waves are excited, it is true, but
their amplitudes are too weak to affect the dominant flow evolution over long periods
of time, i.e. at least tens of inertial periods.

This observed persistence, we suggest, is fundamentally related to the explicit use
of PV. A large part of the flow field is found by inverting an elliptic operator on the
PV, and only a small part is left under the control of the other independent variables.
Even that small part is mostly carried along by PV, almost adiabatically, by some
implicit underlying ‘balance’ relations. These findings are fully consistent with previous
studies of balance in shallow-water flows, where an exceptional degree of balance (i.e.
a virtual absence of gravity waves) was found when explicitly using PV, that is, its
exact unapproximated form, in the definition of balance (McIntyre & Norton 2000;
Mohebalhojeh & Dritschel 2000, 2001; McKiver & Dritschel 2006).

The present model though highly-idealised, has nevertheless allowed us to assess
the significance of inertia–gravity waves in the simplest context, in which those waves
can arise only in response to the advection of PV. It is evident that strong inertia–
gravity waves must be established in some other manner (i.e. via topography, adiabatic
processes, convection, etc. in real flows). Another possibility, not yet considered in this
context, is IGW emission from a sharp change in stratification, like the ‘tropopause’ in
the atmosphere. Observations (Zhang 2004) and numerical simulations (Plougonven,
Teitelbaum & Zeitlin 2003) both suggest that IGWs appear at the level of or just
above the tropopause. Indeed, atmospheric jets tend to straddle the tropopause, and
there is growing evidence that such jets are effective sources for IGWs, which have
a major impact on the upper-level circulation (see Fritts & Alexander 2003 and
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references therein). Is the tropopause the main element responsible for IGW emission,
or is atmospheric compressibility (the exponential decrease of density with height)
important? The present model, which assumes that the density varies only weakly,
can help to disassociate these two elements and as such may help to clarify the
mechanisms behind IGW emission in rotating stratified flows.
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